Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38474502

RESUMO

Enzymes play an important role in numerous natural processes and are increasingly being utilized as environmentally friendly substitutes and alternatives to many common catalysts. Their essential advantages are high catalytic efficiency, substrate specificity, minimal formation of byproducts, and low energy demand. All of these benefits make enzymes highly desirable targets of academic research and industrial development. This review has the modest aim of briefly overviewing the classification, mechanism of action, basic kinetics and reaction condition effects that are common across all six enzyme classes. Special attention is devoted to immobilization strategies as the main tools to improve the resistance to environmental stress factors (temperature, pH and solvents) and prolong the catalytic lifecycle of these biocatalysts. The advantages and drawbacks of methods such as macromolecular crosslinking, solid scaffold carriers, entrapment, and surface modification (covalent and physical) are discussed and illustrated using numerous examples. Among the hundreds and possibly thousands of known and recently discovered enzymes, hydrolases and oxidoreductases are distinguished by their relative availability, stability, and wide use in synthetic applications, which include pharmaceutics, food and beverage treatments, environmental clean-up, and polymerizations. Two representatives of those groups-laccase (an oxidoreductase) and lipase (a hydrolase)-are discussed at length, including their structure, catalytic mechanism, and diverse usage. Objective representation of the current status and emerging trends are provided in the main conclusions.


Assuntos
Lacase , Lipase , Lipase/química , Lacase/química , Enzimas Imobilizadas/química , Catálise , Substâncias Macromoleculares
2.
J Mater Chem B ; 12(5): 1217-1231, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38168979

RESUMO

Biostable shape memory polymers that remain stable in physiological conditions are beneficial for user-defined shape recovery in response to a specific stimulus. For potential commercialization and biocompatibility considerations, biomaterial synthesis must be simple and scalable. Hence, a library of biostable and cytocompatible shape memory polymers with tunable thermomechanical properties based on hard segment content was synthesized using a solvent-free method. Polymer surface chemistry, thermomechanical and shape memory properties, and biostability were assessed. We also investigated the effects of processing methods on thermomechanical and shape memory properties. All polymers showed high glass transition temperatures (>50 °C), which indicates that their temporary shape could be preserved after implantation. Polymers also demonstrate high shape fixity (73-80%) and shape recovery (93-95%). Minimal mass loss (<5%) was observed in accelerated oxidative (20% H2O2) and hydrolytic (0.1 M NaOH) media. Additionally, minimal shape recovery (∼0%) occurred in programmed samples with higher hard segment content that were stored in degradation media. After 40 days of storage in media, programmed samples recovered their primary shapes upon heating to temperatures above their transition temperature. Annealing to above the polymer melting point and solvent casting of polymers improved shape memory and thermal properties. To enable their potential use as biomaterial scaffolds, fiber formation of synthesized polyurethanes was compared with those of samples synthesized using a previously reported solvent-based method. The new method provided polymers that can form fibrous scaffolds with improved mechanical and shape memory properties, which is attributed to the higher molecular weight and crystalline content of polymers synthesized using the new, solvent-free approach. These biostable segmented polyurethanes could be coupled with a range of components that respond to specific stimuli, such as enzymes, magnetic field, pH, or light, to enable a specific shape change response, which could be coupled with drug and/or bioactive material delivery in future work.


Assuntos
Poliuretanos , Materiais Inteligentes , Poliuretanos/química , Teste de Materiais , Solventes , Peróxido de Hidrogênio , Materiais Biocompatíveis/química , Polímeros/química
3.
Molecules ; 28(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37630282

RESUMO

Macromolecules obtained from renewable natural sources are gaining increasing attention as components for a vast variety of sustainable polymer-based materials. Natural raw materials can facilitate continuous-flow production due to their year-round availability and short replenishment period. They also open new opportunities for chemists and biologists to design and create "bioreplacement" and "bioadvantaged" polymers, where complex structures produced by nature are being modified, upgraded, and utilized to create novel materials. Bio-based macromonomers are expected not only to compete with but to replace some petroleum-based analogs, as well. The development of novel sustainable materials is an ongoing and very dynamic process. There are multiple strategies for transforming natural macromolecules into sophisticated value-added products. Some methods include chemical modification of macromolecules, while others include blending several components into one new system. One of the most promising approaches for incorporating renewable macromolecules into new products is the synthesis of hybrid networks based on one or more natural components. Each one has unique characteristics, so its incorporation into a network brings new sustainable materials with properties that can be tuned according to their end-use. This article reviews the current state-of-the-art and future potential of renewable natural macromolecules as sustainable building blocks for the synthesis and use of hybrid polymer networks. The most recent advancements and applications that involve polymers, such as cellulose, chitin, alginic acid, gellan gum, lignin, and their derivatives, are discussed.

4.
ACS Appl Mater Interfaces ; 15(25): 30780-30792, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37319377

RESUMO

We report a new method to shape double-network (DN) hydrogels into customized 3D structures that exhibit superior mechanical properties in both tension and compression. A one-pot prepolymer formulation containing photo-cross-linkable acrylamide and thermoreversible sol-gel κ-carrageenan with a suitable cross-linker and photoinitiators/absorbers is optimized. A new TOPS system is utilized to photopolymerize the primary acrylamide network into a 3D structure above the sol-gel transition of κ-carrageenan (80 °C), while cooling down generates the secondary physical κ-carrageenan network to realize tough DN hydrogel structures. 3D structures, printed with high lateral (37 µm) and vertical (180 µm) resolutions and superior 3D design freedoms (internal voids), exhibit ultimate stress and strain of 200 kPa and 2400%, respectively, under tension and simultaneously exhibit a high compression stress of 15 MPa with a strain of 95%, both with high recovery rates. The roles of swelling, necking, self-healing, cyclic loading, dehydration, and rehydration on the mechanical properties of printed structures are also investigated. To demonstrate the potential of this technology to make mechanically reconfigurable flexible devices, we print an axicon lens and show that a Bessel beam can be dynamically tuned via user-defined tensile stretching of the device. This technique can be broadly applied to other hydrogels to make novel smart multifunctional devices for a range of applications.

5.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108723

RESUMO

Pollution with organic dyes is one of the most typical environmental problems related to industrial wastewater. The removal of these dyes opens up new prospects for environmental remediation, but the design of sustainable and inexpensive systems for water purification is a fundamental challenge. This paper reports the synthesis of novel fortified hydrogels that can bind and remove organic dyes from aqueous solutions. These hydrophilic conetworks consist of chemically modified poly(ethylene glycol) (PEG-m) and multifunctional cellulose macromonomers ("cellu-mers"). Williamson etherification with 4-vinylbenzyl chloride (4-VBC) is used to modify PEGs of different molecular masses (1, 5, 6, and 10 kDa) and cellobiose, Sigmacell, or Technocell™ T-90 cellulose (products derived from natural renewable resources) with polymerizable/crosslinkable moieties. The networks are formed with good (75%) to excellent (96%) yields. They show good swelling and have good mechanical properties according to rheological tests. Scanning electron microscopy (SEM) reveals that cellulose fibers are visibly embedded into the inner hydrogel structure. The ability to bind and remove organic dyes, such as bromophenol blue (BPB), methylene blue (MB), and crystal violet (CV), from aqueous solutions hints at the potential of the new cellulosic hydrogels for environmental cleanup and clean water safeguarding.


Assuntos
Recuperação e Remediação Ambiental , Poluentes Químicos da Água , Polietilenoglicóis/química , Hidrogéis/química , Celulose/química , Água , Corantes/química , Adsorção
6.
Polymers (Basel) ; 15(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37050285

RESUMO

This study describes the synthesis of novel amphiphilic linear-dendritic block copolymers and their self-assembly in water to form supramolecular nanoreactors capable of catalyzing Suzuki-Miyaura coupling reactions under "green" conditions. The block copolymers were formed through copper(I)-catalyzed alkyne-azide cycloaddition between azide functionalized poly(benzyl ether) dendrons as the perfectly branched blocks, as well as bis-alkyne modified poly(ethylene glycol), PEG, as the linear block. A first-generation poly(benzyl ether) dendron (G1) was coupled to a bis-alkyne modified PEG with molecular mass of 5 kDa, forming an ABA copolymer (G1)2-PEG5k-(G1)2 (yield 62%), while a second-generation dendron (G2) was coupled to a 11 kDa bis-alkyne modified PEG to produce (G2)2-PEG11k-(G2)2 (yield 49%). The structural purity and low dispersity of the linear-dendritic copolymers were verified by size-exclusion chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Their self-assembly was studied by dynamic light scattering, showing that (G1)2-PEG5k-(G1)2 and (G2)2-PEG11k-(G2)2 formed single populations of micelles (17 nm and 37 nm in diameter, respectively). The triazole rings located at the boundaries between the core and the corona are efficient chelating groups for transition metals. The ability of the micelles to complex Pd was confirmed by 1H NMR, transmission electron microscopy, and inductively coupled plasma. The catalytic activity of the supramolecular linear-dendritic/Pd complexes was tested in water by model Suzuki-Miyaura reactions in which quantitative yields were achieved within 3 h at 40 °C, while, at 17 °C, a yield of more than 70% was attained after 17 h.

7.
Gels ; 8(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36286108

RESUMO

This study targets the synthesis of novel semi-interpenetrating networks and amphiphilic conetworks, where hydrophilic soft matter (Gellan Gum, GG) was combined with hydrophobic rigid poly(styrene), PSt. To achieve that, GG was chemically modified with 4-vinyl benzyl chloride to form a reactive macromonomer with multiple double bonds. These double bonds were used in a copolymerization with styrene to initially form semi-interpenetrating networks (SIPNs) where linear PSt was intertwined within the GG-PSt conetwork. The interpenetrating linear PSt and unreacted styrene were extracted over 3 consecutive days with yields 18-24%. After the extraction, the resulting conetworks (yields 76-82%) were able to swell both in organic and aqueous media. Thermo-mechanical tests (thermal gravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis) and rheology indicated that both SIPNs and conteworks had, in most cases, improved thermal and mechanical properties compared to pure poly(styrene) and pure GG gels. This crosslinking strategy proved that the reactive combination of a synthetic polymer and a bio-derived constituent would result in the formation of more sustainable materials with improved thermo-mechanical properties. The binding ability of the amphiphilic conetworks towards several organic dyes was high, showing that they could be used as potential materials in environmental clean-up.

8.
Polymers (Basel) ; 14(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35566839

RESUMO

In this paper, we describe a novel method for preparation of polymer composites with homogeneous dispersion of natural fibers in the polymer matrix. In our approach, Williamson ether synthesis is used to chemically modify cellulose with polymerizable styrene moieties and transform it into a novel multifunctional cellu-mer that can be further crosslinked by copolymerization with styrene. Reactions with model compounds (cellobiose and cellotriose) successfully confirm the viability of the new strategy. The same approach is used to transform commercially available cellulose nanofibrils (CNFs) of various sizes: Sigmacell and Technocell™ 40, 90 and 150. The styrene-functionalized cellulose oligomers and CNFs are then mixed with styrene and copolymerized in bulk at 65 °C with 2,2'-azobisisobutyronitrile as initiator. The resulting composites are in a form of semi-interpenetrating networks (s-IPN), where poly(styrene) chains are either crosslinked with the uniformly dispersed cellulosic component or entangled through the network. Non-crosslinked poly(styrene) (31-41 w%) is extracted with CHCl3 and analyzed by size-exclusion chromatography to estimate the extent of homopolymerization and reveal the mechanism of the whole process. Electron microscopy analyses of the networks show the lack of cellu-mer agglomeration throughout the polymer matrix. The homogeneous distribution of cellulose entities leads to improved thermal and mechanical properties of the poly(styrene) composites compared to the physical mixtures of the same components and linear poly(styrene) of similar molecular mass.

10.
ACS Appl Mater Interfaces ; 14(13): 15391-15400, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35333505

RESUMO

A key challenge to the creation of chemically responsive electro-functionality of nonconductive, hydrophobic, and free-contacted textile or fibrous network materials is how to impart the 3D structure with functional filaments to enable responsive structure sensitivity, which is critical in establishing the fibrous platform technology for sensor applications. We demonstrate this capability using an electrospun polymeric fibrous substrate embedded with nano-filaments defined by size-tunable gold nanoparticles and structurally sensitive dendrons as crosslinkers. The resulting interparticle properties strongly depend on the assembly of the nano-filaments, enabling an interface with high structure sensitivity to molecular interactions. This is demonstrated with chemiresistive responses to vaporous alcohol molecules with different chain lengths and isomers, which is critical in breath and sweat sensing involving a high-moisture or -humidity background. The sensitivity scales with the chain length and varies with their isomers. This approach harnesses the multifunctional tunability of the nano-filaments in a sensor array format, showing high structure sensitivity to the alcohol molecules with different chain lengths and isomers. The high structure sensitivity and its implications for a paradigm shift in the design of textile sensor arrays for multiplexing human performance monitoring via breath or sweat sensing and environmental monitoring of air quality are also discussed.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Humanos , Umidade , Nanopartículas Metálicas/química , Suor , Têxteis
11.
Pharmaceutics ; 14(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35057011

RESUMO

This study reports the first enzymatic synthesis leading to several oligomer analogues of poly[3-(3,4-dihydroxyphenyl)glyceric acid]. This biopolymer, extracted from plants of the Boraginaceae family has shown a wide spectrum of pharmacological properties, including antimicrobial activity. Enzymatic ring opening polymerization of 2-methoxycarbonyl-3-(3,4-dibenzyloxyphenyl)oxirane (MDBPO) using lipase from Candida rugosa leads to formation of poly[2-methoxycarbonyl-3-(3,4-dibenzyloxyphenyl)oxirane] (PMDBPO), with a degree of polymerization up to 5. Catalytic debenzylation of PMDBPO using H2 on Pd/C yields poly[2-methoxycarbonyl-3-(3,4-dihydroxyphenyl)oxirane] (PMDHPO) without loss in molecular mass. Antibacterial assessment of natural polyethers from different species of Boraginaceae family Symhytum asperum, S. caucasicum,S. grandiflorum, Anchusa italica, Cynoglossum officinale, and synthetic polymers, poly[2-methoxycarbonyl-3-(3,4-dimethoxyphenyl)oxirane (PMDMPO) and PMDHPO, reveals that only the synthetic analogue produced in this study (PMDHPO) exhibits a promising antimicrobial activity against pathogenic strains S.aureus ATCC 25923 and E.coli ATCC 25922 the minimum inhibitory concentration (MIC) being 100 µg/mL.

12.
ACS Appl Mater Interfaces ; 13(15): 17174-17182, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33822590

RESUMO

Bacteria can colonize essentially any surface and form antibiotic resistant biofilms, which are multicellular structures embedded in an extracellular matrix secreted by the attached cells. To develop better biofilm control technologies, we recently demonstrated that mature biofilms can be effectively removed through on-demand shape recovery of a shape memory polymer (SMP) composed of tert-butyl acrylate (tBA). It was further demonstrated that such a dynamic substratum can sensitize the detached biofilm cells to antibiotics. However, this SMP can undergo shape change only once, limiting its application in long-term biofilm control. This motivated the present study, which aimed to prove the concept that biofilm can be effectively removed by repeated on-demand shape recovery. Reversible shape memory polymers (rSMPs) containing poly(ε-caprolactone) diisocyanatoethyl dimethacrylate (PCLDIMA) of varying molecular masses and butyl acrylate (BA) as a linker were synthesized by using benzoyl peroxide (BPO) as a thermal initiator. By comparison of several combinations of PCLDIMA of different molecular masses, a 2:1 weight ratio mixture of 2000 and 15000 g/mol PCLDIMA was the most promising because it had a shape transition (at 36.7 °C) close to body temperature. The synthesized rSMP demonstrated good reversible shape recovery and up to 94.3 ± 1.0% removal of 48 h Pseudomonas aeruginosa PAO1 biofilm cells after three consecutive shape recovery cycles. Additionally, the detached biofilm cells were found to be 5.0 ± 1.2 times more susceptible to 50 µg/mL tobramycin than the static control.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Fenômenos Mecânicos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Peróxido de Benzoíla/química , Peso Molecular , Temperatura
13.
Biomacromolecules ; 22(4): 1706-1720, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33684291

RESUMO

This study reports the first enzyme-mediated polymerization of dendritic macromonomers. The enzyme substrates are prepared by "click" conjugation between tyrosine and hydrophilic triethylene glycol (TrEG)-based dendrons of three generations (G1, G2, and G3). The resulting enzyme-polymerizable dendrons are defect-free as revealed by mass spectrometry, size-exclusion chromatography, and spectroscopic techniques. The phenol-containing macromonomers are water soluble and their polymerizations into dendronized polymers (denpols) are catalyzed by laccase (an oxidoreductase) under benign conditions (45 °C and aqueous medium at pH = 4.0) with copolymer yields between 30 and 40%. The resulting denpols consist of unnatural poly(tyrosine) backbones and dendritic poly(ether-ester) side chains and have molecular masses up to ∼13 000 Da (generation 1), ∼20 000 Da (generation 2), and ∼36 000 Da (generation 3) determined by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) analyses. They display amphiphilic properties and self-assemble in aqueous solutions to form aggregates with generation-dependent morphologies.


Assuntos
Micelas , Polímeros , Interações Hidrofóbicas e Hidrofílicas , Peso Molecular , Polimerização
14.
Molecules ; 26(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467439

RESUMO

This paper reports the creation of hydroxyapatite/polyester nanografts by "graft-from" polymerization of d,l-lactide with [Ca5(OH)(PO4)3]2 as the initiator and tin(II)-2-ethylhexanoate as the catalyst. Model polymerizations were performed with cyclooctanol as initiator to confirm the grafting on the surface of the hydroxyapatite nanocrystals. Polymers with the highest molecular mass (Mn) between 4250 Da (cyclooctanol) and 6100 Da (hydroxyapatite) were produced. In both cases the molecular mass distributions of the polymers formed were monomodal. The materials obtained were characterized by size-exclusion chromatography, NMR and FT-IR spectroscopy, and thermal methods. Their suitability as additives for commercial bone cement (Simplex P Speedset, Stryker Orthopaedics) has been confirmed by thermal analysis techniques and mechanical testing. The results obtained show that addition of the hydroxyapatite/ polyester nanografts improved both thermal and mechanical properties of the bone cement.


Assuntos
Materiais Biocompatíveis/química , Cimentos Ósseos/química , Durapatita/química , Nanoestruturas/química , Poliésteres/química , Polímeros/química , Catálise , Peso Molecular , Polimerização
15.
Langmuir ; 36(14): 3932-3940, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32223270

RESUMO

Freeze-thaw poly(vinyl alcohol) hydrogels (PVA-H) offer great potential for several biomedical applications due to their biomimetic mechanical properties and biocompatibility. Despite these advantages, the use of PVA-H for load bearing applications has been limited due to poor performance in boundary lubrication compared to natural tissue such as articular cartilage. Recently, zwitterionic polymer brushes have been shown to act as effective boundary lubricants on rigid substrates; however, to the best of our knowledge, the synergistic effects of zwitterionic brushes coupled with the biomimetic fluid load support exhibited by hydrogels have not been reported. We report here on our investigation involving the synthesis and characterization of two unique types of polymer brush functionalized PVA hydrogels. The zwitterionic polymers that were compared contained either [2-(methacryloyloxy)ethyl]dimethyl-3-sulfopropylammonium hydroxide, PMEDSAH, or 2-methacryloyloxyethylphosphorylcholine, PMPC, repeating units. Both hydrogels coated with zwitterionic polymers were found to be cytocompatible. We report further on micrometer-scale surface properties via water contact angle goniometry, surface roughness measurements, and scanning electron microscopy. Finally, the impact of brush functionalization on the mechanics of the tribologically enhanced gels is reported with comparison to natural articular cartilage within the context of Hertzian contact theory.

16.
Biomacromolecules ; 21(6): 2132-2146, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32233461

RESUMO

This study describes a unique "quasi-living" block copolymerization method based on an initiation by a single enzyme. We use this term to describe a process where a preformed polymer chain can be reactivated to continue propagating with a second or third comonomer without addition of new catalyst. The presented strategy involves a laccase (oxidoreductase) mediated initial polymerization of 4-hydroxyphenylacetic acid to a homopolymer containing phenolic terminal units, which in turn can be easily reactivated by the same enzyme in the same reaction vessel to continue propagation with a second monomer (tyramine). Increased copolymer yield (up to 26.0%) and polymer molecular mass (up to Mw = 116 000 Da) are achieved through the addition of previously developed micellar and hydrogel enzyme complexing agents. The produced poly(tyramine)-b-poly(4-hydroxyphenylacetic acid)-b-poly(tyramine) is water-soluble and able to self-assemble in aqueous solution. Both tyramine blocks were successfully modified with ibuprofen moieties (up to 24.6% w/w load) as an example for potential polymer drug conjugation. The copolymerization could be further extended with addition of a third (fluorescent) comonomer in the same reaction vessel to yield a fluorescent pentablock copolymer. The successful modifications and advantageous solution behavior of the produced copolymers demonstrate their viability as versatile drug delivery and/or bioimaging agents, as confirmed by cytotoxicity and cellular uptake studies.


Assuntos
Micelas , Polímeros , Sistemas de Liberação de Medicamentos , Hidrogéis , Polimerização
17.
Polymers (Basel) ; 11(3)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30960523

RESUMO

Herein, we report the formation and characterization of novel amphiphilic linear-dendritic block copolymers (LDBCs) composed of hydrophilic dendritic poly(ether-ester), PEE, blocks and hydrophobic linear poly(styrene), PSt. The LDBCs are synthesized via controlled atom transfer radical polymerization (ATRP) initiated by a PEE macroinitiator. The copolymers formed have narrow molecular mass distributions and are designated as LGn-PSt Mn, in which LG represents the PEE fragment, n denotes the generation of the dendron (n = 1⁻3), and Mn refers to the average molecular mass of the LDBC (Mn = 3.5⁻68 kDa). The obtained LDBCs are utilized to fabricate honeycomb films by a static "breath figure" (BF) technique. The copolymer composition strongly affects the film morphology. LDBCs bearing acetonide dendron end groups produce honeycomb films when the PEE fraction is lower than 20%. Pore uniformity increases as the PEE content decreases. For LDBCs with hydroxyl end groups, only the first generation LDBCs yield BF films, but with a significantly smaller pore size (0.23 µm vs. 1⁻2 µm, respectively). Although higher generation LDBCs with free hydroxyl end groups fail to generate honeycomb films by themselves, the use of a cosolvent or addition of homo PSt leads to BF films with a controllable pore size (3.7⁻0.42 µm), depending on the LDBC content. Palladium complexes within the two triazole groups in each of the dendron's branching moieties can also fine-tune the morphology of the BF films.

18.
Biomacromolecules ; 20(2): 927-936, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30592620

RESUMO

This study describes the first use of laccase-lipase enzymatic reaction for the synthesis of novel perfectly structured alternating copolymers. Initially, six types of complexing agents, linear(A)-linear(B), linear(A)-linear(B)-linear(A), linear-dendritic, dendritic-linear-dendritic, linear-hyperbranched, and hyperbranched-linear-hyperbranched amphiphilic block copolymers, are proven to significantly enhance enzyme activity of three different types of lipases - Penicillium camemberti, Candida rugosa, and Burkholderia cepacia (up to 1400%, 1700%, and 870% increase with respect to the native enzymes). The copolymerization is performed in several consecutive steps: (a) lipase and laccase are dissolved in aqueous medium at neutral pH; (b) a complexing agent is added leading to cocompartmentalization of the two enzymes within a micelle or physical network; (c) the two comonomers are introduced simultaneously to the tandem enzyme complex. The reaction proceeds in the following pathway: laccase catalyzes the oxidation of catechol to o-quinone followed by lipase comediated Michael addition of a diamine. While laccase could catalyze the entire process, addition of lipase is able to increase copolymer yield up to 30.7%. Addition of a complexing agent improves the yield further up to 67.9% (23.2% yield obtained for native laccase). Complexing agents significantly increase polymer molecular mass ( Mw = 130 900 vs 35 500 Da for the native enzymes reaction system). The resulting copolymers are highly fluorescent (quantum yield up to 0.733) and demonstrate pH sensitive behavior, properties that hint toward their potential as imaging agents.


Assuntos
Lacase/química , Lipase/química , Polímeros/química , Burkholderia cepacia/enzimologia , Candida/enzimologia , Catálise , Concentração de Íons de Hidrogênio , Micelas , Oxirredução , Penicillium/enzimologia , Polimerização
19.
ACS Omega ; 3(2): 1700-1709, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30023814

RESUMO

The aim of this study is to develop efficient enzyme immobilization media that will enable the reuse of the biocatalysts over multiple cycles, increase their thermal stability, and attenuate their activity toward hydrophobic substrates for "green" transformations in aqueous media. For this purpose, amphiphilic AB and ABA block copolymers were synthesized and tested with laccase (a multicopper oxidase). In all cases, the hydrophilic B block consisted of poly(ethylene glycol), PEG, with molecular masses of 3, 5, 13, 20, or 13 kDa poly(ethylene oxide). The hydrophobic A blocks were made of linear poly(styrene), PS; hyperbranched poly(p-chloromethyl styrene); or dendritic poly(benzyl ether)s of generations 2, 3, and 4 (G2, G3, and G4) with molecular masses ranging from 1 to 24 kDa. A total of 23 different copolymers (self-assembling into micelles or physical networks) were evaluated. Notable activity enhancements were achieved with both micelles (up to 253%) and hydrogels (up to 408%). The highest enzymatic activity and thermal stability were observed with laccase immobilized in hydrogels consisting of the linear ABA block copolymer PS2.7k-PEG3k-PS2.7k (13 290 µkat/L, 65 °C, ABTS test). This represents a 1245% improvement over native laccase at the same conditions. At 25 °C, the same complex showed a 1236% higher activity than the enzyme. The highest polymerization yield for a water-insoluble monomer was achieved with laccase immobilized in hydrogels composed of linear-dendritic ABA copolymer G3-PEG5k-G3 (85.5%, 45 °C, tyrosine monomer). The broad substrate specificity and reusability of the immobilized laccase were also demonstrated by the successful discoloration of bromophenol blue, methyl orange, and rhodamine B over eight repetitive cycles.

20.
Biomacromolecules ; 15(11): 4082-95, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25325886

RESUMO

This article describes the enzyme-catalyzed "green" synthesis of an unnatural poly(amino acid). dl-Tyrosine was polymerized under environmentally friendly conditions using linear-dendritic laccase complexes as initiators and water as solvent. The influence of the dendron generation in the linear-dendritic copolymers, the monomer concentration, and time and temperature on the polymer yields and molecular masses was investigated. Depending on the reaction conditions poly(tyrosine) with molecular mass (Mw) up to 82 kDa could be obtained in yields ranging between 45 and 69%. It was found that the linear-dendritic laccase complexes can induce further chain growth upon addition of fresh monomer to the preformed poly(tyrosine) in a fashion resembling the classic "living" polymerization. The structure of the poly(tyrosine) was investigated by NMR, FT-IR, and MALDI-TOF and it was discovered that the polymer chains consist of phenol repeating units linked together by C-C and C-O bonds randomly distributed along the backbone of the polymers. The materials formed are completely water-soluble and behave as typical poly(zwitterions) changing charge and size with the medium pH. DLS measurements reveal that the zeta potential of the polymers can vary between +15 mV at pH 1.2 with hydrodynamic diameter (Dh) = 6.7 nm to -35 mV at pH 11.8 and Dh = 10 nm. The isoelectric point was found at pH = 2.3-2.6, where Dh of the polymer is at the minimum (2.4 nm).


Assuntos
Química Verde/métodos , Lacase/farmacologia , Peptídeos/síntese química , Soluções Farmacêuticas/química , Animais , Células CHO , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Cricetinae , Cricetulus , Concentração de Íons de Hidrogênio , Lacase/química , Estrutura Secundária de Proteína , Trametes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...